Using the graphene Moiré pattern for the trapping of C60 and homoepitaxy of graphene.

نویسندگان

  • Jiong Lu
  • Pei Shan Emmeline Yeo
  • Yi Zheng
  • Zhiyong Yang
  • Qiaoliang Bao
  • Chee Kwan Gan
  • Kian Ping Loh
چکیده

The graphene Moiré superstructure offers a complex landscape of humps and valleys to molecules adsorbing and diffusing on it. Using C(60) molecules as the classic hard sphere analogue, we examine its assembly and layered growth on this corrugated landscape. At the monolayer level, the cohesive interactions of C(60) molecules adsorbing on the Moiré lattice freeze the molecular rotation of C(60) trapped in the valley sites, resulting in molecular alignment of all similarly trapped C(60) molecules at room temperature. The hierarchy of adsorption potential well on the Moiré lattice causes diffusion-limited dendritic growth of C(60) films, as opposed to isotropic growth observed on a smooth surface like graphite. Due to the strong binding energy of the C(60) film, part of the dentritic C(60) films polymerize at 850 K and act as solid carbon sources for graphene homoepitaxy. Our findings point to the possibility of using periodically corrugated graphene in molecular spintronics due to its ability to trap and align organic molecules at room temperature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A REVIEW OF THE MECHANISMS OF CYTOTOXICITY AND ANTIBACTERIAL ACTIVITY OF GRAPHENE

Graphene has exhibited wide applications in nanotechnology, especially in biomedicine because of its unique physical and chemical properties. The degree of toxicity of graphene materials depends on various factors such as surface charge, physicochemical properties, toxicity determination methods, and cell line. Direct contact of the very sharp edges of graphene with the cell membrane is one of ...

متن کامل

Constructing molecular structures on periodic superstructure of graphene/Ru(0001).

We review the way to fabricate large-scale, high-quality and single crystalline graphene epitaxially grown on Ru(0001) substrate. A moiré pattern of the graphene/Ru(0001) is formed due to the lattice mismatch between graphene and Ru(0001). This superstructure gives rise to surface charge redistribution and could behave as an ordered quantum dot array, which results in a perfect template to guid...

متن کامل

Moire bands in twisted double-layer graphene.

A moiré pattern is formed when two copies of a periodic pattern are overlaid with a relative twist. We address the electronic structure of a twisted two-layer graphene system, showing that in its continuum Dirac model the moiré pattern periodicity leads to moiré Bloch bands. The two layers become more strongly coupled and the Dirac velocity crosses zero several times as the twist angle is reduc...

متن کامل

Sensitivity Enhancement of Ring Laser Gyroscope Using Dielectric-Graphene Photonic Crystal

In a ring laser gyroscope, due to the rotation and the Sagnac effect, a phase difference between the two counter-propagating beams is generated. In this device, the higher phase difference between these two beams causes the better the interference pattern detection, and thus the sensitivity is increased. In this paper, the effect of inserting a dielectric-graphene photonic crystal inside a ring...

متن کامل

Preparation and characterization of Graphene/Nickel Oxide nanorods composite

Graphene-based nanocomposites are newly emerged materials with a wide range of applications such as in supercapacitors electrode. The high conductivity and ability for passing electric current, makes Graphene an appropriate new item to be used in cells. Electroactive transition metal oxides, owing fast reversible redox pairs, are used to store electrical charge. Furthermore, the Graphene/NiO na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 6 1  شماره 

صفحات  -

تاریخ انتشار 2012